The European XFEL: start of user operation

Video from the joint ESRF-ILL colloquia.

In the past decade we have seen very important developments in the field of accelerator based X-ray user facilities, with the advent of 4th generation synchrotron sources and MHz rate free electron lasers. The first hard X-ray free-electron laser, LCLS (US) became operational in 2009 and over the last decade four additional hard X-ray FELs have begun user operation. Among these, the Eu-XFEL is the first hard XFEL powered by a superconducting linear accelerator, which enables MHz rate pulse generation. A specificity of XFELs is their very short pulse duration (10-100fs) opening new scientific opportunities to probe matter at the atomic scale, with chemical selectivity and bulk sensitivity, and at the relevant timescales.

After many years of construction, user operation at the Eu-XFEL ramped up gradually, and between 2017 and 2019 six instruments were delivered to the user community. In this talk I will first briefly introduce the present performance of the facility in terms of electron and photon beam characteristics. I will then give an overview of recent science highlights and comment on some important challenges ahead.

Keywords: XFEL, free-electron laser

Resource type: video

Language: English

Authors: Sakura Pascarelli
External resources:
The European XFEL: start of user operation https://pan-training.eu/materials/the-european-xfel-start-of-user-operation Video from the joint ESRF-ILL colloquia. In the past decade we have seen very important developments in the field of accelerator based X-ray user facilities, with the advent of 4th generation synchrotron sources and MHz rate free electron lasers. The first hard X-ray free-electron laser, LCLS (US) became operational in 2009 and over the last decade four additional hard X-ray FELs have begun user operation. Among these, the Eu-XFEL is the first hard XFEL powered by a superconducting linear accelerator, which enables MHz rate pulse generation. A specificity of XFELs is their very short pulse duration (10-100fs) opening new scientific opportunities to probe matter at the atomic scale, with chemical selectivity and bulk sensitivity, and at the relevant timescales. After many years of construction, user operation at the Eu-XFEL ramped up gradually, and between 2017 and 2019 six instruments were delivered to the user community. In this talk I will first briefly introduce the present performance of the facility in terms of electron and photon beam characteristics. I will then give an overview of recent science highlights and comment on some important challenges ahead. XFEL, free-electron laser


0