Self-evaluation Photon and Neutron RIs for FAIR data certification
This ExPaNDS project deliverable describes a FAIR self-assessment undertaken by the ten
ExPaNDS partner Photon and Neutron Research Infrastructures (PaN RIs) over the
three-month period July – September 2022. After reviewing selected examples of existing
FAIR evaluation frameworks designed to...
Keywords: FAIR, metadata, expands, European Photon and Neutron facilities , wp2-ExPaNDS
Resource type: Document
Self-evaluation Photon and Neutron RIs for FAIR data certification
https://zenodo.org/record/7246802
https://pan-training.eu/materials/self-evaluation-photon-and-neutron-ris-for-fair-data-certification
This ExPaNDS project deliverable describes a FAIR self-assessment undertaken by the ten
ExPaNDS partner Photon and Neutron Research Infrastructures (PaN RIs) over the
three-month period July – September 2022. After reviewing selected examples of existing
FAIR evaluation frameworks designed to enable assessment at different levels (dataset,
repository, and organisation), the report describes the evaluation approach adopted for the
ExPaNDS FAIR self-assessment. As no existing framework met our specific need to focus
on FAIR workflows and processes in PaN RIs, it was necessary to select, combine, and
adapt existing frameworks. Supported by four underlying guiding principles, our approach
drew heavily on the FAIR Principles, the RDA FAIR Data Maturity Model, and FAIRsFAIR’s
CoreTrustSeal+FAIRenabling framework. Post-evaluation feedback from ExPaNDS partners
indicated that they found the FAIR self-assessment a useful and valuable exercise for
understanding current levels of FAIRness at their facilities and for articulating what
implementations they have in progress or planned to support FAIR in future. A key output of
the ExPaNDS FAIR evaluation is the collected self-assessment reports from the ten partner
facilities. These reports are published openly and in full as part of the deliverable. In addition,
the self-assessments are supplemented with some high-level observations on the state of
the FAIR journey across the ExPaNDS facilities.
FAIR, metadata, expands, European Photon and Neutron facilities , wp2-ExPaNDS
PaN Community
vDiffraction: A serious game about diffraction and crystals
#### This game is a fun way to discover the world of crystals and their symmetries through diffraction.
Crystals are all around us: in our environment (rocks and minerals, etc), in our bodies (sugar, bones, gallstones, etc.) and in technology (metals and alloys, silicon and quartz used for...
Scientific topics: crystallography
Keywords: game, diffraction, crystal diffraction, software
Resource type: game
vDiffraction: A serious game about diffraction and crystals
https://www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/vdiffraction
https://pan-training.eu/materials/vdiffraction-a-serious-game-about-diffraction-and-crystals
#### This game is a fun way to discover the world of crystals and their symmetries through diffraction.
Crystals are all around us: in our environment (rocks and minerals, etc), in our bodies (sugar, bones, gallstones, etc.) and in technology (metals and alloys, silicon and quartz used for microelectronics, etc.). By successively discovering the diffraction of X-rays, neutrons and electrons, scientists in the twentieth century threw the door to the microscopic world wide open by demonstrating that crystals are made up of atoms and molecules and explaining their structure.
Crystals are characterised by the fact that their constituents are arranged in a highly ordered structure. This internal order and its symmetry is clearly visible in the diffraction patterns produced by any crystal. It is this symmetry which is also gives crystals their often amazing shapes, making them highly prized by rockhounds.
Whether you are a senior scientist, a student, or just curious about science, vDiffraction is a serious game that will let you try your hand at crystal diffraction so that you can begin to understand how scientists identify the symmetry characteristics of a crystal. This is the first, crucial step towards understanding the atomic and molecular structure of a crystalline material, in other words what type of atoms and molecules make up the crystal and how they are organised.
crystallography
game, diffraction, crystal diffraction, software