10 materials found
Keywords:
neutron
Introduction to Neutron Reflectometry
An introductory course to Neutrons and their properties, as a foundational pre-requisite for Neutron Scattering and Reflectometry experimentation and theory.
Keywords: neutron
Resource type: Moodle course, e-learning
Introduction to Neutron Reflectometry
https://pan-learning.org/moodle/course/view.php?id=95
https://pan-training.eu/materials/introduction-to-neutron-reflectometry
An introductory course to Neutrons and their properties, as a foundational pre-requisite for Neutron Scattering and Reflectometry experimentation and theory.
neutron
Quasielastic Neutron Scattering Course (1st iteration)
No short description available.
Keywords: QENS, neutron
Resource type: Moodle course, e-learning
Quasielastic Neutron Scattering Course (1st iteration)
https://pan-learning.org/moodle/course/view.php?id=32
https://pan-training.eu/materials/quasielastic-neutron-scattering-course-1st-iteration
No short description available.
QENS, neutron
Advanced Topics in Neutron Scattering
This course covers "Advanced Topics in Neutron Scattering". The modules are stand-alone so you can take one or all and in any order you choose. Self-enrolment in this course is allowed.
We recommend that you complete the introductory course on neutron scattering before attempting to follow...
Keywords: neutron scattering, neutron
Resource type: Moodle course, e-learning
Advanced Topics in Neutron Scattering
https://pan-learning.org/moodle/course/view.php?id=4
https://pan-training.eu/materials/advanced-topics-in-neutron-scattering
This course covers "Advanced Topics in Neutron Scattering". The modules are stand-alone so you can take one or all and in any order you choose. Self-enrolment in this course is allowed.
We recommend that you complete the introductory course on neutron scattering before attempting to follow this modules in this course.
neutron scattering, neutron
Introduction to Neutron Scattering
Neutron scattering.
Keywords: neutron scattering, neutron
Resource type: Moodle course, e-learning
Introduction to Neutron Scattering
https://pan-learning.org/moodle/course/view.php?id=5
https://pan-training.eu/materials/introduction-to-neutron-scattering
Neutron scattering.
neutron scattering, neutron
Neutron Scattering Library
Learning material used for courses in e-neutrons.org
Links to Databases & Multimedia learning tools
Reviews and Handbooks.
List of different schools (recordings or learning material).
Keywords: neutron scattering, neutron
Resource type: Moodle course, e-learning
Neutron Scattering Library
https://pan-learning.org/moodle/course/view.php?id=6
https://pan-training.eu/materials/neutron-scattering-library
Learning material used for courses in e-neutrons.org
Links to Databases & Multimedia learning tools
Reviews and Handbooks.
List of different schools (recordings or learning material).
neutron scattering, neutron
The Wolter optics based neutron microscope
Imaging with neutrons has seen strong development in the past two decades, driven by the rapid improvements in digital cameras and the ability to use the properties of the neutron to generate a variety of image contrasts. This webinar will give an overview of the start of the NIST neutron imaging...
Keywords: neutron, Neutron imaging, neutron microscopy, Wolter optics
Resource type: video
The Wolter optics based neutron microscope
https://www.youtube.com/watch?v=HwlNLHRAC4U
https://pan-training.eu/materials/the-wolter-optics-based-neutron-microscope
Imaging with neutrons has seen strong development in the past two decades, driven by the rapid improvements in digital cameras and the ability to use the properties of the neutron to generate a variety of image contrasts. This webinar will give an overview of the start of the NIST neutron imaging program and how measurements have been augmented with a simultaneous X-ray source. Discussion will focus on the current state of the art in neutron microscopy, and the outlook for the field with the nearly completed first neutron equivalent to Hooke’s microscope with lens based on Wolter optics.
neutron, Neutron imaging, neutron microscopy, Wolter optics
Neutrons4Science: Enter the world of neutrons! Just be curious!
Enter the world of neutrons! They are a powerful and highly acclaimed tool not only for the study of condensed matter (the world we live in) but also for confirming our current understanding of physics. What's more, you don't even need to be a scientist to use Neutrons4Science. Just be...
Keywords: neutron, ILL ThALES, neutron spectrometer, Magnons, gravitational spectrometer, GRANIT
Resource type: tool
Neutrons4Science: Enter the world of neutrons! Just be curious!
https://www.ill.eu/fr/users/support-labs-infrastructure/software-scientific-tools/neutrons4science
https://pan-training.eu/materials/neutrons4science-enter-the-world-of-neutrons-just-be-curious
Enter the world of neutrons! They are a powerful and highly acclaimed tool not only for the study of condensed matter (the world we live in) but also for confirming our current understanding of physics. What's more, you don't even need to be a scientist to use Neutrons4Science. Just be curious!
Neutrons and protons are elementary particles constituting the nucleus of atoms. The neutron has no electric charge but has a spin and a magnetic moment. Neutron beams - like beams of X-rays, electrons or muons - are valuable tools for studying the multitude of materials that surround us in our daily lives (alloys, magnets, superconductors, polymers, colloids, proteins, biological systems, …). However, the way neutrons interact with matter is quite unique and, as a result, it can often reveal to us what is normally hidden. With Neutrons4Science you can discover one of the many types of neutron spectroscopy.
The neutron also answers questions on the very foundations of physics, helping us to solve some of the great mysteries of the universe (Is the Grand Unified Theory valid? Is there a fifth fundamental force? ...) As an example, Neutrons4Science gives you insights to a brand new method of neutron spectroscopy that takes advantage of the quantum states of this light neutral particle.
Neutrons4Science lets you experience neutron science through three interactive 3D animations:
• ThALES: Use a neutron spectrometer (ILL ThALES) as if you were performing a real experiment.
• Magnons: Discover the spin waves that exist inside magnetic materials and understand how ThALES can observe them.
• GRANIT: Discover an innovative gravitational spectrometer (ILL GRANIT) based on neutron quantum states in a gravitational field.
These three educational animations were developed with the help of scientists at the "Institut Laue-Langevin", one of the world's flagship facilities for neutron science.
This project was funded by the ILL and the LPSC and developed by Ipter (out of business since 2015).
neutron, ILL ThALES, neutron spectrometer, Magnons, gravitational spectrometer, GRANIT
general public
Seeing the chemistry in biology using neutron crystallography
New developments in macromolecular neutron crystallography have led to an increasing number of structures published over the last decade. Hydrogen atoms, normally invisible in most X-ray crystal structures, become visible in neutron structures. Using X-rays allows one to see structure, while...
Keywords: macromolecular neutron crystallography, biological macromolecules, neutron
Resource type: video, slides, scientific article
Seeing the chemistry in biology using neutron crystallography
https://www.youtube.com/watch?v=eL63fo5O-vk
https://pan-training.eu/materials/seeing-the-chemistry-in-biology-using-neutron-crystallography
New developments in macromolecular neutron crystallography have led to an increasing number of structures published over the last decade. Hydrogen atoms, normally invisible in most X-ray crystal structures, become visible in neutron structures. Using X-rays allows one to see structure, while neutrons allow one to reveal the chemistry inherent in these macromolecular structures. A number of surprising and sometimes controversial results have emerged from recent neutron structures; because it is difficult to see or predict hydrogen atoms in X-ray structures, when they are seen by neutrons they can be in unexpected locations with important chemical and biological consequences. Here we describe examples of chemistry seen with neutrons for the first time in biological macromolecules over the past few years.
macromolecular neutron crystallography, biological macromolecules, neutron
Neutron crystallography to inform drug design targeting SARS-CoV-2 main protease
Talk from one of the ILL colloqia. See colloquia list at the bottom for other talks.
COVID-19, caused by SARS-CoV-2, remains a global health threat after two years of the pandemic even with available vaccines and therapeutic options. The viral main protease (Mpro) is indispensable for the...
Keywords: COVID research, neutron, drug development, neutron crystallography
Resource type: video, slides
Neutron crystallography to inform drug design targeting SARS-CoV-2 main protease
https://www.youtube.com/watch?v=G-vPWwh5NKs
https://pan-training.eu/materials/neutron-crystallography-to-inform-drug-design-targeting-sars-cov-2-main-protease
Talk from one of the ILL colloqia. See colloquia list at the bottom for other talks.
COVID-19, caused by SARS-CoV-2, remains a global health threat after two years of the pandemic even with available vaccines and therapeutic options. The viral main protease (Mpro) is indispensable for the virus replication and thus is an important target for small-molecule antivirals. Computer-assisted and structure-based drug design strategies rely on atomic scale understanding of the target biomacromolecule traditionally derived from X-ray crystallographic data collected at cryogenic temperatures. Conventional protein X-ray crystallography is limited by possible cryo-artifacts and its inability to locate the functional hydrogen atoms crucial for understanding chemistry occurring in enzyme active sites. Neutrons are ideal probes to observe the protonation states of ionizable amino acids at near-physiological temperature, directly determining their electric charges – crucial information for drug design. Our room-temperature X-ray crystal structures of Mpro brought rapid insights into the reactivity of the catalytic cysteine, malleability of the active site, and binding modes with clinical protease inhibitors. The neutron crystal structures of ligand-free and inhibitor-bound Mpro were determined allowing the direct observation of protonation states of all residues in a coronavirus protein for the first time [1,2]. At rest, the catalytic Cys-His dyad exists in the reactive zwitterionic state (Fig. 1), with both Cys145 and His41 charged, instead of the anticipated neutral state. Covalent inhibitor binding results in modulation of the protonation states. This information was used to design nanomolar hybrid reversible covalent inhibitors with robust antiviral properties. High-throughput virtual screening, utilizing ORNL’s supercomputing capabilities, in conjunction with in vitro assays identified a lead noncovalent compound with sub-micromolar affinity. The neutron structure of Mpro in complex with the noncovalent inhibitor was used in a structure-activity relationship (SAR) study guided by virtual reality structure analysis to novel Mpro inhibitors with imporved affinity to the enzyme [3]. Our research is providing real-time data for atomistic design and discovery of Mpro inhibitors to combat the COVID-19 pandemic and prepare for future threats from pathogenic coronaviruses.
[1] D.W. Kneller et al. Unusual zwitterionic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem.295, 17365-17373 (2020).
[2] D.W. Kneller et al. Direct observation of protonation state modulation in SARS-CoV-2 main protease upon inhibitor binding with neutron crystallography. J. Med. Chem.64, 4991-5000 (2021).
[3] D.W. Kneller et al. Structural, electronic and electrostatic determinants for inhibitor binding to subsites S1 and S2 in SARS-CoV-2 main protease. J. Med. Chem.64, 17366-17383 (2021).
The authors acknowledge support by the National Virtual Biotechnology Laboratory, US Department of Energy.
COVID research, neutron, drug development, neutron crystallography
Neutron diffraction from Boro-carbon for efficient structural analysis and defect detection
Mousumi Upadhyay Kahaly presents: Neutron diffraction from Boro-carbon for efficient structural analysis and defect detection at the 2nd PaNOSC and ExPaNDS PaN EOSC Symposium (October 2021).
Scientific topics: neutron diffraction, inelastic scattering
Keywords: McStas, simulation, inelastic neutron scattering, ab-initio, neutron scattering, neutron, neutron diffraction, defect detection, structural analysis, wp5-ExPaNDS
Resource type: video, slides
Neutron diffraction from Boro-carbon for efficient structural analysis and defect detection
https://zenodo.org/record/5636331/files/20211026-PaN-EOSC-Symposium2021-MousumiUpadhyayKahaly-UseCase.pdf?download=1
https://pan-training.eu/materials/neutron-diffraction-from-boro-carbon-for-efficient-structural-analysis-and-defect-detection
Mousumi Upadhyay Kahaly presents: Neutron diffraction from Boro-carbon for efficient structural analysis and defect detection at the 2nd PaNOSC and ExPaNDS PaN EOSC Symposium (October 2021).
neutron diffraction
inelastic scattering
McStas, simulation, inelastic neutron scattering, ab-initio, neutron scattering, neutron, neutron diffraction, defect detection, structural analysis, wp5-ExPaNDS
PaN Community
scientists