Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python68
    • Python program68
    • Python script68
    • py68
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Reinforcement learning17
    • Supervised learning17
    • Unsupervised learning17
    • Bayesian methods9
    • Biostatistics9
    • Descriptive statistics9
    • Gaussian processes9
    • Inferential statistics9
    • Markov processes9
    • Multivariate statistics9
    • Probabilistic graphical model9
    • Probability9
    • Statistics9
    • Statistics and probability9
    • Data rendering8
    • Data visualisation8
    • MicroRNA sequencing7
    • RNA sequencing7
    • RNA-Seq7
    • RNA-Seq analysis7
    • Small RNA sequencing7
    • Small RNA-Seq7
    • Small-Seq7
    • Transcriptome profiling7
    • WTSS7
    • Whole transcriptome shotgun sequencing7
    • miRNA-seq7
    • Comparative transcriptomics6
    • R6
    • R program6
    • R script6
    • Transcriptome6
    • Transcriptomics6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Chromosome walking2
    • Clone verification2
    • DNA-Seq2
    • DNase-Seq2
    • Exomes2
    • Genome annotation2
    • Genomes2
    • Genomics2
    • High throughput sequencing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Personal genomics2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Synthetic genomics2
    • Targeted next-generation sequencing panels2
    • Viral genomics2
    • Whole genomes2
    • Antimicrobial stewardship1
    • Bioinformatics1
    • Bottom-up proteomics1
    • Cloud computing1
    • Computer science1
    • Discovery proteomics1
    • Genes1
    • Genetics1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • HPC1
    • Heredity1
    • High performance computing1
    • High-performance computing1
    • Image analysis1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Medical microbiology1
    • Metaproteomics1
    • Microbial genetics1
    • Microbial physiology1
    • Microbial surveillance1
    • Microbiological surveillance1
    • Microbiology1
    • Molecular infection biology1
    • Molecular microbiology1
    • Network1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS123
    • Show N_FILTERS more
    • Keyword
    • Python123
    • Data science23
    • R19
    • Machine learning17
    • Statistics9
    • Data visualization8
    • Python biologists8
    • Artificial intelligence7
    • Programming7
    • RNA-seq7
    • Transcriptomics6
    • Unix/Linux6
    • General5
    • Single-cell sequencing5
    • Reproducibility4
    • Shiny3
    • API2
    • Bioinformatics2
    • Biopython2
    • Cloud computing2
    • Containerization2
    • Genomics2
    • Large language models2
    • Next generation sequencing2
    • Snakemake2
    • Version control2
    • Docker1
    • Earlham Institute1
    • Galaxy1
    • Genome sequencing1
    • IMPC1
    • Image analysis1
    • International Mouse Phenotyping Consortium1
    • Java1
    • Microbiology1
    • Mouse phenotypes1
    • Ontology1
    • Pathways and Networks1
    • Pattern matching1
    • Perl1
    • Programmatic access1
    • Protein structure1
    • Proteomics1
    • Quarto1
    • Record parsing1
    • SQL1
    • Sequence alignments1
    • Spatial transcriptomics1
    • Unix1
    • Workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified
    • Intermediate4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • License Not Specified71
    • MIT License25
    • Creative Commons Attribution 4.0 International10
    • Creative Commons Attribution Share Alike 4.0 International6
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only1
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians3
    • Clinicians2
    • PhD students2
    • Bench biologists1
    • PhD1
    • post-docs1
    • programmers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Allegra Via1
    • Ankit Mahato1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Sébastien Wieckowski1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Sébastien Wieckowski1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Zhixinfuture1
    • bioinfo-prog1
    • bioinformatics.ca1
    • Show N_FILTERS more
    • Resource type
    • e-learning2
    • Show N_FILTERS more
  • Only show materials from current space
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Not specified

and Max age: 1 week

and Across all spaces: true

124 materials found
  • A Bioinformatics Guide

    R script RNA-Seq Genomics Python R RNA-seq
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • Course: Data Analysis with Python

    Python script Python
  • NeuromatchAcademy/course-content

    Machine learning Statistics and probability Pathway or network Artificial intelligence Pathways and Networks Python Statistics
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • 12
  • 13
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.