Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python68
    • Python program68
    • Python script68
    • py68
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Reinforcement learning17
    • Supervised learning17
    • Unsupervised learning17
    • Data rendering10
    • Data visualisation10
    • Bayesian methods9
    • Biostatistics9
    • Descriptive statistics9
    • Gaussian processes9
    • Inferential statistics9
    • Markov processes9
    • Multivariate statistics9
    • Probabilistic graphical model9
    • Probability9
    • Statistics9
    • Statistics and probability9
    • MicroRNA sequencing8
    • RNA sequencing8
    • RNA-Seq8
    • RNA-Seq analysis8
    • Small RNA sequencing8
    • Small RNA-Seq8
    • Small-Seq8
    • Transcriptome profiling8
    • WTSS8
    • Whole transcriptome shotgun sequencing8
    • miRNA-seq8
    • Comparative transcriptomics7
    • Transcriptome7
    • Transcriptomics7
    • R6
    • R program6
    • R script6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Bioinformatics3
    • Cloud computing3
    • Computer science3
    • HPC3
    • High performance computing3
    • High-performance computing3
    • Chromosome walking2
    • Clone verification2
    • DNA-Seq2
    • DNase-Seq2
    • Exomes2
    • FAIR data2
    • Findable, accessible, interoperable, reusable data2
    • Genome annotation2
    • Genomes2
    • Genomics2
    • High throughput sequencing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Personal genomics2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Synthetic genomics2
    • Targeted next-generation sequencing panels2
    • Viral genomics2
    • Whole genomes2
    • Aerobiology1
    • Algorithms1
    • Antimicrobial stewardship1
    • Behavioural biology1
    • Biological rhythms1
    • Biological science1
    • Biology1
    • Biomathematics1
    • Biomedical informatics1
    • Bottom-up proteomics1
    • Chronobiology1
    • Clinical informatics1
    • Computational biology1
    • Computer programming1
    • Cryobiology1
    • Data management1
    • Data structures1
    • Discovery proteomics1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Enrichment1
    • Enrichment analysis1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS132
    • ESRF – European Synchrotron Radiation Facility3
    • Helmholtz-Zentrum Dresden-Rossendorf (HZDR)1
    • Paul Scherrer Institute (PSI)1
    • Show N_FILTERS more
    • Keyword
    • Python
    • biodiversity73
    • FAIR data63
    • microgalaxy51
    • FAIR50
    • metadata43
    • work-in-progress42
    • Data management41
    • jupyter-notebook40
    • R34
    • research data management33
    • elixir32
    • jbrowse131
    • PaNOSC30
    • gmod30
    • data management26
    • prokaryote26
    • tomography26
    • expands25
    • Data science23
    • one-health23
    • covid1922
    • tomwer22
    • NEPHEWS project21
    • NFDI4Chem21
    • fair21
    • ai-ml20
    • nabu20
    • plants20
    • tomotools20
    • Data management planning19
    • Reproducibility19
    • data management plan19
    • Machine learning18
    • eukaryote18
    • introduction18
    • python-modular18
    • Data reuse17
    • NFDI4Biodiversity and GfÖ Winter School 202217
    • ecologyanalysis17
    • interactive-tools17
    • FAIR Data16
    • NFDI16
    • PaN15
    • canvas15
    • synchrotron14
    • Online Repository13
    • cyoa13
    • earth-system13
    • paper-replication13
    • research data13
    • wp3-ExPaNDS13
    • Data mining12
    • Data processing12
    • assembly12
    • data stewardship12
    • fair-data12
    • open data12
    • pedagogy12
    • train-the-trainers12
    • Clinical data11
    • DMP11
    • Data visualization11
    • MIGHTS11
    • Ontology11
    • Photon and Neutron11
    • Photon science11
    • Research Data Management11
    • discovery11
    • eLabFTW11
    • id-quant11
    • next-steps11
    • virology11
    • workflows11
    • Large Language Model10
    • RDM10
    • SciCat10
    • application profile10
    • clinical-metaproteomics10
    • gai-llm10
    • label-TMT1110
    • nanopore10
    • wp2-ExPaNDS10
    • CONVERGE9
    • DDA9
    • Data9
    • Data Management9
    • Data analysis9
    • Data sharing9
    • FAIR Data, Workflows, and Research9
    • Metadata9
    • Python biologists9
    • Statistics9
    • TANGO9
    • advanced9
    • analyses9
    • data life cycle9
    • illumina9
    • label-free9
    • metabarcoding9
    • Show N_FILTERS more
    • Difficulty level
    • Not specified130
    • Intermediate6
    • Advanced2
    • Beginner1
    • Show N_FILTERS more
    • Licence
    • License Not Specified79
    • MIT License28
    • Creative Commons Attribution 4.0 International12
    • Creative Commons Attribution Share Alike 4.0 International9
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only1
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians4
    • Bioinformaticians2
    • Clinicians2
    • Data Managers2
    • PhD students2
    • programmers2
    • Beginner1
    • Bench biologists1
    • Biomedical Researchers1
    • Computational biologists1
    • Data Scientists1
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PaN Community1
    • PhD1
    • PhD Students1
    • Photon Community1
    • Research Scientists1
    • Scientists1
    • Students1
    • computational scientists1
    • life scientists1
    • post-docs1
    • research data scientist1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Allegra Via1
    • Ankit Mahato1
    • Arthur Goldberg1
    • AstraZeneca1
    • Avans Hogeschool1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • David Palecek1
    • Decathlon Digital - @dktunited1
    • Dipl.-Inform. Bernd Klein1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jeremy Cohen1
    • Jonathan Karr1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Personalized Health Informatics Group1
    • Petar Horki1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Stefanie Lueck1
    • Steve Crouch1
    • Sébastien Wieckowski1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • Anthony Bretaudeau1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Cymon Cox1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Marius van den Beek1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Peter van Heusden1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sabine Österle1
    • Saskia Hiltemann1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Sébastien Wieckowski1
    • Teaching materials at the Harvard Chan Bioinformatics Core1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Tutorial3
    • Training materials2
    • API reference1
    • E-Learning1
    • E-learning1
    • Jupyter notebook1
    • Mock data1
    • Video1
    • documenation1
    • examples1
    • git1
    • software1
    • video1
    • workflow1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
    • Status
    • Active6
    • Show N_FILTERS more
  • Only show materials from current space
  • Show disabled materials
  • Show materials with broken links
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Include archived: true

and Across all spaces: true

and Keywords: Python

141 materials found
  • A Bioinformatics Guide

    R script RNA-Seq Genomics Python R RNA-seq
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • Tutorial

    EMO-BON Metagenomics: From Backend Integration to Frontend Processing

    •• intermediate
    Python SPARQL fuseki
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • Course: Data Analysis with Python

    Python script Python
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • 14
  • 15
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.