Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Bioinformatics
    • Data management10
    • FAIR data10
    • Findable, accessible, interoperable, reusable data10
    • Metadata management10
    • Research data management (RDM)10
    • Open science4
    • Algorithms2
    • Computer programming2
    • Data rendering2
    • Data structures2
    • Data visualisation2
    • Programming languages2
    • Software development2
    • Software engineering2
    • Biomedical informatics1
    • Clinical informatics1
    • Cloud computing1
    • Computer science1
    • Data mining1
    • Genes1
    • Genetics1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • HPC1
    • Health and disease1
    • Health informatics1
    • Healthcare informatics1
    • Heredity1
    • High performance computing1
    • High-performance computing1
    • Medical informatics1
    • Pattern recognition1
    • Phenotype1
    • Phenotyping1
    • Show N_FILTERS more
    • Tool
    • RStudio1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS2
    • Show N_FILTERS more
    • Keyword
    • CONVERGE1
    • Data analysis1
    • Data management1
    • Data visualisation1
    • Python1
    • RStudio1
    • ggPlot1
    • Show N_FILTERS more
    • Difficulty level
    • Beginner1
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International1
    • Creative Commons Attribution Share Alike 4.0 International1
    • Show N_FILTERS more
    • Target audience
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PhD candidates1
    • Researcher in life sciences1
    • Scientists1
    • Show N_FILTERS more
    • Author
    • Erik Hedman1
    • Markus Englund1
    • Wandrille Duchemin1
    • Show N_FILTERS more
    • Contributor
    • Elin Kronander1
    • Mattias Strömberg1
    • Niclas Jareborg1
    • Stephan Nylinder1
    • Wolmar Nyberg Åkerström1
    • Yvonne Kallberg1
    • Show N_FILTERS more
    • Resource type
    • e-learning
    • lessons14
    • Presentation11
    • E-Learning1
    • Learning pathway1
    • Slides1
    • Training materials1
    • Show N_FILTERS more
    • Related resource
    • The Carpentries1
    • Show N_FILTERS more
    • Status
    • Active2
    • Show N_FILTERS more
  • Only show materials from current space
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Bioinformatics

and Resource type: e-learning

and Across all spaces: true

2 materials found
  • e-learning

    Explore and Visualize Your Data with Python

    •• intermediate
    Data visualisation Bioinformatics Data analysis Python
  • e-learning, lessons

    Introduction to Data Management Practices - Scripted analysis with R

    • beginner
    Data management FAIR data Bioinformatics Data visualisation CONVERGE RStudio ggPlot
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.