Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python3
    • Python program3
    • Python script3
    • py3
    • Active learning2
    • Ensembl learning2
    • Kernel methods2
    • Knowledge representation2
    • Machine learning2
    • Neural networks2
    • Recommender system2
    • Reinforcement learning2
    • Supervised learning2
    • Unsupervised learning2
    • Bayesian methods1
    • Biostatistics1
    • Chromosome walking1
    • Clone verification1
    • Comparative transcriptomics1
    • DNA-Seq1
    • DNase-Seq1
    • Descriptive statistics1
    • Gaussian processes1
    • High throughput sequencing1
    • High-throughput sequencing1
    • Inferential statistics1
    • Markov processes1
    • MicroRNA sequencing1
    • Multivariate statistics1
    • NGS1
    • NGS data analysis1
    • Next gen sequencing1
    • Next generation sequencing1
    • Panels1
    • Primer walking1
    • Probabilistic graphical model1
    • Probability1
    • RNA sequencing1
    • RNA-Seq1
    • RNA-Seq analysis1
    • Sanger sequencing1
    • Sequencing1
    • Single-cell genomics1
    • Single-cell sequencing1
    • Small RNA sequencing1
    • Small RNA-Seq1
    • Small-Seq1
    • Statistics1
    • Statistics and probability1
    • Targeted next-generation sequencing panels1
    • Transcriptome1
    • Transcriptome profiling1
    • Transcriptomics1
    • WTSS1
    • Whole transcriptome shotgun sequencing1
    • miRNA-seq1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS7
    • Show N_FILTERS more
    • Keyword
    • Python
    • Data management2
    • Data science2
    • FAIR data2
    • Machine learning2
    • Next generation sequencing2
    • Artificial intelligence1
    • Large language models1
    • RNA-seq1
    • Single-cell sequencing1
    • Statistics1
    • Transcriptomics1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified7
    • Show N_FILTERS more
    • Licence
    • Creative Commons Attribution 4.0 International6
    • MIT License1
    • Show N_FILTERS more
    • Author
    • SIB Swiss Institute of Bioinformatics
    • The Carpentries Incubator8
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Allegra Via1
    • Ankit Mahato1
    • Arthur Goldberg1
    • AstraZeneca1
    • Avans Hogeschool1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • David Palecek1
    • Decathlon Digital - @dktunited1
    • Dipl.-Inform. Bernd Klein1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jeremy Cohen1
    • Jonathan Karr1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Personalized Health Informatics Group1
    • Petar Horki1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Stefanie Lueck1
    • Steve Crouch1
    • Sébastien Wieckowski1
    • Show N_FILTERS more
    • Contributor
    • SIB Swiss Institute of Bioinformatics7
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Python

and Authors: SIB Swiss Institute of Bioinformatics

and Include broken links: true

7 materials found
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • sib-swiss/single-cell-python-training

    Sequencing RNA-Seq Single-cell sequencing Transcriptomics Next generation sequencing Python RNA-seq
  • sib-swiss/pytorch-practical-training

    Machine learning Python
  • sib-swiss/first-steps-with-python-training

    Python script Python
  • sib-swiss/intermediate-python-training

    Python script Data science Python
  • sib-swiss/introduction-to-statistics-with-python-training

    Statistics and probability Python Statistics
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.