Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python program
    • Python66
    • Python script66
    • py66
    • FAIR data42
    • Findable, accessible, interoperable, reusable data42
    • Data management24
    • Metadata management24
    • Research data management (RDM)24
    • Active learning18
    • Ensembl learning18
    • Kernel methods18
    • Knowledge representation18
    • Machine learning18
    • Neural networks18
    • Recommender system18
    • Reinforcement learning18
    • Supervised learning18
    • Unsupervised learning18
    • Bayesian methods8
    • Biostatistics8
    • Data rendering8
    • Data visualisation8
    • Descriptive statistics8
    • Gaussian processes8
    • Inferential statistics8
    • Markov processes8
    • MicroRNA sequencing8
    • Multivariate statistics8
    • Probabilistic graphical model8
    • Probability8
    • RNA sequencing8
    • RNA-Seq8
    • RNA-Seq analysis8
    • Small RNA sequencing8
    • Small RNA-Seq8
    • Small-Seq8
    • Statistics8
    • Statistics and probability8
    • Transcriptome profiling8
    • WTSS8
    • Whole transcriptome shotgun sequencing8
    • miRNA-seq8
    • Comparative transcriptomics7
    • Transcriptome7
    • Transcriptomics7
    • R6
    • R program6
    • R script6
    • Chromosome walking5
    • Clone verification5
    • DNA-Seq5
    • DNase-Seq5
    • High throughput sequencing5
    • High-throughput sequencing5
    • NGS5
    • NGS data analysis5
    • Next gen sequencing5
    • Next generation sequencing5
    • Panels5
    • Primer walking5
    • Sanger sequencing5
    • Sequencing5
    • Single-cell genomics5
    • Single-cell sequencing5
    • Targeted next-generation sequencing panels5
    • Exomes4
    • Genome annotation4
    • Genomes4
    • Genomics4
    • Personal genomics4
    • Synthetic genomics4
    • Viral genomics4
    • Whole genomes4
    • Bioinformatics2
    • Image analysis2
    • Pipelines2
    • Software integration2
    • Tool integration2
    • Tool interoperability2
    • Workflows2
    • Antimicrobial stewardship1
    • Biodiversity1
    • Bioimaging1
    • Biological imaging1
    • Bottom-up proteomics1
    • Breakend assembly1
    • Cloud computing1
    • Computer science1
    • Data mining1
    • Discovery proteomics1
    • Enrichment1
    • Enrichment analysis1
    • Functional enrichment1
    • Functional genome annotation1
    • Genes1
    • Genetics1
    • Genome assembly1
    • Genomic assembly1
    • Genotype1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS
    • Show N_FILTERS more
    • Keyword
    • Python66
    • Data science15
    • R4
    • Unix/Linux4
    • General3
    • Reproducibility3
    • Containerization2
    • Shiny2
    • Version control2
    • Artificial intelligence1
    • Cloud computing1
    • Docker1
    • Large language models1
    • Quarto1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified
    • Show N_FILTERS more
    • Licence
    • License Not Specified35
    • MIT License17
    • Creative Commons Attribution 4.0 International4
    • BSD 3-Clause "New" or "Revised" License3
    • Creative Commons Zero v1.0 Universal3
    • Creative Commons Attribution Share Alike 4.0 International2
    • GNU General Public License v3.0 only1
    • The Unlicense1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator6
    • MolSSI Education4
    • SIB Swiss Institute of Bioinformatics3
    • Sundeep Agarwal3
    • Google2
    • Jake Vanderplas2
    • UC Davis Bioinformatics Core Training Page2
    • posit-dev2
    • @SUNET1
    • @foss421
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • AstraZeneca1
    • Charles Severance1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Carpentry1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • ELIXIR Europe Training1
    • Firas Zemzem1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Insee1
    • Instituto Gulbenkian de Ciência1
    • Jeffrey Hu1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Max Planck Institute for Astronomy1
    • Michigan State University1
    • Oleksii Trekhleb1
    • Parlance Labs1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • SoftUni1
    • Software Carpentry1
    • The Algorithms1
    • The Gulbenkian Training Programme in Bioinformatics1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • Uber1
    • University of Michigan1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Zhixinfuture1
    • bioinfo-prog1
    • cambiotraining1
    • rnorm1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator6
    • MolSSI Education4
    • SIB Swiss Institute of Bioinformatics3
    • Sundeep Agarwal3
    • Google2
    • Jake Vanderplas2
    • UC Davis Bioinformatics Core Training Page2
    • posit-dev2
    • @SUNET1
    • @foss421
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • AstraZeneca1
    • Charles Severance1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Carpentry1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • ELIXIR Europe Training1
    • Firas Zemzem1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Insee1
    • Instituto Gulbenkian de Ciência1
    • Jeffrey Hu1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Max Planck Institute for Astronomy1
    • Michigan State University1
    • Oleksii Trekhleb1
    • Parlance Labs1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • SoftUni1
    • Software Carpentry1
    • The Algorithms1
    • The Gulbenkian Training Programme in Bioinformatics1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • Uber1
    • University of Michigan1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Zhixinfuture1
    • bioinfo-prog1
    • cambiotraining1
    • rnorm1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Python program

and Content provider: Elixir TeSS

and Difficulty level: Not specified

66 materials found
  • Course: Applied Python Programming for Life Scientists

    Python script Python
  • Course: Data Analysis with Python

    Python script Python
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • DanChitwood/plants_and_python

    Python script Python
  • Zemzemfiras1/PythonIN-86400sec

    Python script Python
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.