Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python17
    • Python program17
    • Python script17
    • py17
    • Bayesian methods2
    • Biostatistics2
    • Data rendering2
    • Data visualisation2
    • Descriptive statistics2
    • Gaussian processes2
    • Inferential statistics2
    • Markov processes2
    • Multivariate statistics2
    • Probabilistic graphical model2
    • Probability2
    • Statistics2
    • Statistics and probability2
    • Active learning1
    • Ensembl learning1
    • Kernel methods1
    • Knowledge representation1
    • Machine learning1
    • Neural networks1
    • R1
    • R program1
    • R script1
    • Recommender system1
    • Reinforcement learning1
    • Supervised learning1
    • Unsupervised learning1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS22
    • ESRF – European Synchrotron Radiation Facility1
    • PaNOSC1
    • Paul Scherrer Institute (PSI)1
    • Show N_FILTERS more
    • Keyword
    • Python22
    • Data science4
    • Artificial intelligence2
    • Data visualization2
    • R2
    • Shiny2
    • Statistics2
    • Computing1
    • Ewoks1
    • General1
    • Large language models1
    • Machine learning1
    • Materials Science1
    • Protein structure1
    • Simulations1
    • Unix/Linux1
    • Version control1
    • Visualization1
    • Workflows1
    • hdf51
    • login required1
    • tutorial1
    • workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified
    • Advanced1
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • MIT License
    • License Not Specified273
    • Creative Commons Attribution 4.0 International45
    • Creative Commons Attribution Share Alike 4.0 International31
    • Creative Commons Zero v1.0 Universal5
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • GNU General Public License v3.0 only3
    • Creative Commons Attribution Non Commercial 4.0 International2
    • GNU Affero General Public License v3.0 only2
    • European Union Public License 1.11
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Chemists1
    • Materials scientists1
    • Physicists1
    • software developers1
    • Show N_FILTERS more
    • Author
    • Sundeep Agarwal3
    • posit-dev2
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Aliaksandr V. Yakutovich1
    • Andres Ortega-Guerrero1
    • AstraZeneca1
    • BioINForm1
    • Carlo A. Pignedoli1
    • Christopher J. Sewell1
    • Dan Chitwood1
    • Daniel Chen1
    • Daniel Hollas1
    • Deborah Prezzi1
    • Decathlon Digital - @dktunited1
    • Dou Du1
    • Edan Bainglass1
    • Elisa Molinari1
    • Firas Zemzem1
    • Giovanni Pizzi1
    • Google1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Ifeanyi J. Onuorah1
    • Iurii Timrov1
    • Jake Vanderplas1
    • Junfeng Qiao1
    • Jusong Yu1
    • Lorenzo Bastonero1
    • Marnik Bercx1
    • Michael A. Hernández-Bertrán1
    • Michigan State University1
    • Miki Bonacci1
    • Nataliya Paulish1
    • Nicola Marzari1
    • Oleksii Trekhleb1
    • Peter N. O. Gillespie1
    • Pietro Bonfà1
    • Roberto De Renzi1
    • S.Lott1
    • SIB Swiss Institute of Bioinformatics1
    • Scott Reed1
    • Sebastiaan P. Huber1
    • Sergio Martínez Cuesta1
    • The Algorithms1
    • Timo Reents1
    • Uber1
    • Xing Wang1
    • cambiotraining1
    • Show N_FILTERS more
    • Contributor
    • Sundeep Agarwal3
    • posit-dev2
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • AstraZeneca1
    • BioINForm1
    • Dan Chitwood1
    • Daniel Chen1
    • Decathlon Digital - @dktunited1
    • Firas Zemzem1
    • Google1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Jake Vanderplas1
    • Michigan State University1
    • Oleksii Trekhleb1
    • S.Lott1
    • SIB Swiss Institute of Bioinformatics1
    • Scott Reed1
    • Sergio Martínez Cuesta1
    • The Algorithms1
    • Uber1
    • cambiotraining1
    • Show N_FILTERS more
    • Resource type
    • jupyter notebook1
    • service1
    • tool1
    • Show N_FILTERS more
    • Related resource
    • h5web documentation1
    • npm h5web app package1
    • npm h5web lib package1
    • Show N_FILTERS more
    • Collection
    • PaNOSC Node Service Collection1
    • Show N_FILTERS more
    • Status
    • Active1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Show materials with broken links
  • Hide archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Not specified

and Include archived: true

and Licence: MIT License

25 materials found
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • scottmreed/molecular_informatics

    Data visualisation Data science Data visualization Python
  • Graylab/DL4Proteins-notebooks

    Machine learning Artificial intelligence Protein structure Python
  • DanChitwood/plants_and_python

    Python script Python
  • Zemzemfiras1/PythonIN-86400sec

    Python script Python
  • harvardinformatics/learning-bioinformatics-at-home

    R script Statistics and probability Python R Statistics Unix/Linux
  • semacu/data-science-python

    Python script Data science Python
  • posit-dev/intro-to-shiny-for-python

    Python script Python Shiny
  • bioinform-org/bioinforming-hs

    Data visualisation Data visualization General Python
  • cambiotraining/corestats

    Statistics and probability Python R Statistics
  • 1
  • 2
  • 3
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.