Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python66
    • Python program66
    • Python script66
    • py66
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Reinforcement learning17
    • Supervised learning17
    • Unsupervised learning17
    • Bayesian methods8
    • Biostatistics8
    • Descriptive statistics8
    • Gaussian processes8
    • Inferential statistics8
    • Markov processes8
    • Multivariate statistics8
    • Probabilistic graphical model8
    • Probability8
    • Statistics8
    • Statistics and probability8
    • Data rendering7
    • Data visualisation7
    • MicroRNA sequencing7
    • RNA sequencing7
    • RNA-Seq7
    • RNA-Seq analysis7
    • Small RNA sequencing7
    • Small RNA-Seq7
    • Small-Seq7
    • Transcriptome profiling7
    • WTSS7
    • Whole transcriptome shotgun sequencing7
    • miRNA-seq7
    • Comparative transcriptomics6
    • R6
    • R program6
    • R script6
    • Transcriptome6
    • Transcriptomics6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Exomes3
    • Genome annotation3
    • Genomes3
    • Genomics3
    • Personal genomics3
    • Synthetic genomics3
    • Viral genomics3
    • Whole genomes3
    • Chromosome walking2
    • Clone verification2
    • DNA-Seq2
    • DNase-Seq2
    • High throughput sequencing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Targeted next-generation sequencing panels2
    • Antimicrobial stewardship1
    • Bioinformatics1
    • Bottom-up proteomics1
    • Breakend assembly1
    • Cloud computing1
    • Computer science1
    • Discovery proteomics1
    • Functional genome annotation1
    • Genes1
    • Genetics1
    • Genome assembly1
    • Genomic assembly1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • HPC1
    • Heredity1
    • High performance computing1
    • High-performance computing1
    • Image analysis1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Medical microbiology1
    • Metagenome annotation1
    • Metaproteomics1
    • Microbial genetics1
    • Microbial physiology1
    • Microbial surveillance1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS118
    • Show N_FILTERS more
    • Keyword
    • Python118
    • Data science22
    • Machine learning17
    • R17
    • Python biologists8
    • Statistics8
    • Data visualization7
    • Programming7
    • RNA-seq7
    • Artificial intelligence6
    • Transcriptomics6
    • Unix/Linux6
    • General5
    • Single-cell sequencing5
    • Reproducibility4
    • Genomics3
    • Next generation sequencing3
    • Bioinformatics2
    • Biopython2
    • Cloud computing2
    • Containerization2
    • Large language models2
    • Shiny2
    • Snakemake2
    • Version control2
    • API1
    • Docker1
    • Genome annotation1
    • Genome assembly1
    • Genome sequencing1
    • IMPC1
    • Image analysis1
    • International Mouse Phenotyping Consortium1
    • Java1
    • Long read sequencing1
    • Microbiology1
    • Mouse phenotypes1
    • Ontology1
    • Pathways and Networks1
    • Pattern matching1
    • Perl1
    • Programmatic access1
    • Protein structure1
    • Proteomics1
    • Quarto1
    • Record parsing1
    • SQL1
    • Sequence alignments1
    • Spatial transcriptomics1
    • Unix1
    • Workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified
    • Intermediate4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • License Not Specified66
    • MIT License22
    • Creative Commons Attribution 4.0 International10
    • Creative Commons Attribution Share Alike 4.0 International6
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only3
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians3
    • Clinicians2
    • PhD students2
    • Bench biologists1
    • PhD1
    • post-docs1
    • programmers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit-dev2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Scott Reed1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Zhixinfuture1
    • bioinfo-prog1
    • bioinformatics.ca1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • MolSSI Education4
    • Sundeep Agarwal3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit-dev2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fred Hutch Data Science Lab1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Scott Reed1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Zhixinfuture1
    • bioinfo-prog1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • posit-conf-20231
    • rnorm1
    • Show N_FILTERS more
    • Resource type
    • e-learning2
    • Show N_FILTERS more
  • Show materials from all spaces
  • Hide disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Difficulty level: Not specified

and Include disabled: true

and Max age: 1 week

118 materials found
  • Course: Applied Plant Genomics

    Genomics Genome assembly Genome annotation Sequence read processing Long read sequencing Next generation sequencing Python
  • Course: Applied Python Programming for Life Scientists

    Python script Python
  • Course: Data Analysis with Python

    Python script Python
  • A Bioinformatics Guide

    R script RNA-Seq Genomics Python R RNA-seq
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.