Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python35
    • Python program35
    • Python script35
    • py35
    • Active learning7
    • Ensembl learning7
    • Kernel methods7
    • Knowledge representation7
    • Machine learning7
    • Neural networks7
    • Recommender system7
    • Reinforcement learning7
    • Supervised learning7
    • Unsupervised learning7
    • MicroRNA sequencing6
    • RNA sequencing6
    • RNA-Seq6
    • RNA-Seq analysis6
    • Small RNA sequencing6
    • Small RNA-Seq6
    • Small-Seq6
    • Transcriptome profiling6
    • WTSS6
    • Whole transcriptome shotgun sequencing6
    • miRNA-seq6
    • Comparative transcriptomics5
    • Data rendering5
    • Data visualisation5
    • Transcriptome5
    • Transcriptomics5
    • R4
    • R program4
    • R script4
    • Single-cell genomics3
    • Single-cell sequencing3
    • Bayesian methods2
    • Biostatistics2
    • Descriptive statistics2
    • Exomes2
    • Gaussian processes2
    • Genome annotation2
    • Genomes2
    • Genomics2
    • Inferential statistics2
    • Markov processes2
    • Multivariate statistics2
    • Personal genomics2
    • Probabilistic graphical model2
    • Probability2
    • Statistics2
    • Statistics and probability2
    • Synthetic genomics2
    • Viral genomics2
    • Whole genomes2
    • Antimicrobial stewardship1
    • Bioinformatics1
    • Bottom-up proteomics1
    • Chromosome walking1
    • Clone verification1
    • DNA-Seq1
    • DNase-Seq1
    • Discovery proteomics1
    • Enrichment1
    • Enrichment analysis1
    • FAIR data1
    • Findable, accessible, interoperable, reusable data1
    • Functional enrichment1
    • Genes1
    • Genetics1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • Heredity1
    • High throughput sequencing1
    • High-throughput sequencing1
    • Image analysis1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Medical microbiology1
    • Metaproteomics1
    • Microbial genetics1
    • Microbial physiology1
    • Microbial surveillance1
    • Microbiological surveillance1
    • Microbiology1
    • Molecular infection biology1
    • Molecular microbiology1
    • NGS1
    • NGS data analysis1
    • Next gen sequencing1
    • Next generation sequencing1
    • Over-representation analysis1
    • Panels1
    • Peptide identification1
    • Phenotype1
    • Phenotyping1
    • Pipelines1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS67
    • ESRF – European Synchrotron Radiation Facility1
    • Show N_FILTERS more
    • Keyword
    • Python
    • FAIR data20
    • Data management13
    • PaNOSC13
    • R13
    • Reproducibility13
    • Data science12
    • PaN11
    • synchrotron11
    • Photon science10
    • TANGO9
    • tango-controls9
    • Python biologists8
    • Elettra synchrotron7
    • Machine learning7
    • Programming7
    • data management7
    • discovery7
    • Photon and Neutron6
    • RNA-seq6
    • Tango Kernel Webinar6
    • expands6
    • synchrotron beamline6
    • Data visualization5
    • FAIR5
    • NMR5
    • Nuclear Magnetic Resonance5
    • Transcriptomics5
    • neutron research5
    • neutron sources5
    • SciCat4
    • Unix/Linux4
    • Data3
    • EOSC3
    • EPR3
    • Electron Paramagnetic Resonance3
    • General3
    • Genomics3
    • Materials Science3
    • Next generation sequencing3
    • PyMca3
    • Single-cell sequencing3
    • Synchrotron3
    • X-ray Diffraction3
    • XAS3
    • login required3
    • neutron3
    • open data3
    • persistent identifiers3
    • synchrotron control3
    • taurus3
    • tomography3
    • tomwer3
    • wp2-ExPaNDS3
    • xanes3
    • xanes & exafs3
    • Artificial intelligence2
    • Bioinformatics2
    • Biopython2
    • Containerization2
    • Electron Microscopy2
    • Ion beams2
    • Ion microprobe applications2
    • Ion microprobe techniques2
    • Macromolecular Crystallography2
    • McStas2
    • McXtrace2
    • Neutron imaging2
    • Neutron scattering2
    • PGAA2
    • Powder Diffraction2
    • Prompt-Gamma Neutron Activation Analysis2
    • PyTango2
    • SAXS2
    • Sardana Configuration Demo2
    • Snakemake2
    • Statistics2
    • X-ray fluorescence2
    • X-rays2
    • XRF2
    • catalogue2
    • combined analysis techniques2
    • cpptango2
    • crystallography2
    • data catalogue2
    • exafs2
    • kernel2
    • metadata2
    • pid2
    • pogo2
    • pyFAI2
    • scada2
    • spectroscopy2
    •   data analysis library pandas2
    • - teach students data modelling1
    • -ikon/tree/master/notebooks1
    • -learning platform hosts free education1
    • API1
    • Analytical Electron Microscopy1
    • B2FIND1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified
    • Intermediate2
    • Advanced1
    • Beginner1
    • Show N_FILTERS more
    • Licence
    • License Not Specified
    • MIT License22
    • Creative Commons Attribution 4.0 International10
    • Creative Commons Attribution Share Alike 4.0 International8
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only3
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians3
    • Clinicians2
    • PhD students2
    • Bench biologists1
    • PhD1
    • post-docs1
    • programmers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • allegra.via Via7
    • MolSSI Education4
    • Data Carpentry2
    • Instituto Gulbenkian de Ciência2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • @SUNET1
    • @posit-dev1
    • @posit-pbc1
    • Allen Downey1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Hacking for Science1
    • Hamel Husain1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • Lino Galiana1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Plants&Python1
    • PyMC Labs1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Sebastian Raschka1
    • SoftUni1
    • Software Carpentry1
    • Teaching materials at the Harvard Chan Bioinformatics Core1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Zhixinfuture1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • rnorm1
    • udlbook1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • MolSSI Education4
    • Data Carpentry2
    • Instituto Gulbenkian de Ciência2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • @SUNET1
    • @posit-dev1
    • @posit-pbc1
    • Allen Downey1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Fred Hutch Data Science Lab1
    • Hacking for Science1
    • Hamel Husain1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • Lino Galiana1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Oxford University1
    • Parlance Labs1
    • Plants&Python1
    • PyMC Labs1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Sebastian Raschka1
    • SoftUni1
    • Software Carpentry1
    • Teaching materials at the Harvard Chan Bioinformatics Core1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Zhixinfuture1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • rnorm1
    • udlbook1
    • Show N_FILTERS more
    • Resource type
    • e-learning2
    • documenation1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Python

and Difficulty level: Not specified

and Licence: License Not Specified

68 materials found
  • Course: Data Analysis with Python

    Python script Python
  • A Bioinformatics Guide

    R script RNA-Seq Genomics Python R RNA-seq
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • Kyrand/dataviz-with-python-and-js-ed-2

    Data visualisation Data science Data visualization Java Python
  • e-learning

    Accessing Mouse Phenotypes and Disease Associations with the IMPC Solr API: A complete Python guide

    Genotype and phenotype IMPC International Mouse Phenotyping Consortium Mouse phenotypes Python
  • EmilHvitfeldt/feature-engineering-az

    Machine learning Statistics and probability Data science Python R Statistics
  • biotrain-latam/BiotrAIn-pilot-course

    Genomics Microbiology Sequencing Machine learning Artificial intelligence Next generation sequencing Ontology Python R
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.