Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python68
    • Python program68
    • Python script68
    • py68
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Reinforcement learning17
    • Supervised learning17
    • Unsupervised learning17
    • Bayesian methods9
    • Biostatistics9
    • Data rendering9
    • Data visualisation9
    • Descriptive statistics9
    • Gaussian processes9
    • Inferential statistics9
    • Markov processes9
    • Multivariate statistics9
    • Probabilistic graphical model9
    • Probability9
    • Statistics9
    • Statistics and probability9
    • MicroRNA sequencing7
    • RNA sequencing7
    • RNA-Seq7
    • RNA-Seq analysis7
    • Small RNA sequencing7
    • Small RNA-Seq7
    • Small-Seq7
    • Transcriptome profiling7
    • WTSS7
    • Whole transcriptome shotgun sequencing7
    • miRNA-seq7
    • Comparative transcriptomics6
    • R6
    • R program6
    • R script6
    • Transcriptome6
    • Transcriptomics6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Bioinformatics2
    • Chromosome walking2
    • Clone verification2
    • Cloud computing2
    • Computer science2
    • DNA-Seq2
    • DNase-Seq2
    • Exomes2
    • Genome annotation2
    • Genomes2
    • Genomics2
    • HPC2
    • High performance computing2
    • High throughput sequencing2
    • High-performance computing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Personal genomics2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Synthetic genomics2
    • Targeted next-generation sequencing panels2
    • Viral genomics2
    • Whole genomes2
    • Algorithms1
    • Antimicrobial stewardship1
    • Biomathematics1
    • Bottom-up proteomics1
    • Computational biology1
    • Computer programming1
    • Data structures1
    • Discovery proteomics1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Genes1
    • Genetics1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • Graph analytics1
    • Heredity1
    • Image analysis1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Mathematical biology1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS129
    • Show N_FILTERS more
    • Keyword
    • Python
    • Data science23
    • R19
    • Machine learning17
    • Statistics9
    • Data visualization8
    • Python biologists8
    • Artificial intelligence7
    • Programming7
    • RNA-seq7
    • Transcriptomics6
    • Unix/Linux6
    • General5
    • Single-cell sequencing5
    • Reproducibility4
    • Shiny3
    • API2
    • Bioinformatics2
    • Biopython2
    • Cloud computing2
    • Containerization2
    • Genomics2
    • Large language models2
    • Next generation sequencing2
    • SQL2
    • Snakemake2
    • Version control2
    • Computational modelling1
    • DES1
    • Data Science1
    • Data analysis1
    • Data visualisation1
    • Docker1
    • Earlham Institute1
    • Foundations of Data Science1
    • Galaxy1
    • Genome sequencing1
    • IMPC1
    • Image analysis1
    • International Mouse Phenotyping Consortium1
    • Java1
    • Microbiology1
    • Mouse phenotypes1
    • Ontology1
    • Pathways and Networks1
    • Pattern matching1
    • Perl1
    • Programmatic access1
    • Protein structure1
    • Proteomics1
    • Quarto1
    • RSE1
    • Record parsing1
    • Research software1
    • SPARQL1
    • Sequence alignments1
    • Spatial transcriptomics1
    • Unix1
    • Workflows1
    • coding1
    • coding skills1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • fuseki1
    • jupyter-notebook1
    • object-oriented programming1
    • programming1
    • software development1
    • testing1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified123
    • Intermediate4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • License Not Specified72
    • MIT License27
    • Creative Commons Attribution 4.0 International12
    • Creative Commons Attribution Share Alike 4.0 International6
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only1
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians4
    • Clinicians2
    • PhD students2
    • programmers2
    • Bench biologists1
    • Bioinformaticians1
    • Computational biologists1
    • Data Managers1
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PhD1
    • Students1
    • computational scientists1
    • post-docs1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Allegra Via1
    • Ankit Mahato1
    • Arthur Goldberg1
    • AstraZeneca1
    • Avans Hogeschool1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • David Palecek1
    • Decathlon Digital - @dktunited1
    • Dipl.-Inform. Bernd Klein1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jeremy Cohen1
    • Jonathan Karr1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Steve Crouch1
    • Sébastien Wieckowski1
    • The Algorithms1
    • The Carpentries1
    • UC Berkeley Data 1001
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • MolSSI Education4
    • Sundeep Agarwal3
    • posit-dev3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • Scott Reed2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • Anthony Bretaudeau1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Cymon Cox1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fred Hutch Data Science Lab1
    • Girls Who Code at U-M DCMB1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Marius van den Beek1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Peter van Heusden1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • Rohan Alexander1
    • S.Lott1
    • Saskia Hiltemann1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Sébastien Wieckowski1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Tutorial3
    • API reference1
    • Jupyter notebook1
    • examples1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
    • Status
    • Active4
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Max age: 24 hours

and Include broken links: true

and Keywords: Python

129 materials found
  • A Bioinformatics Guide

    R script RNA-Seq Genomics Python R RNA-seq
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • MolSSI-Education/python-package-best-practices

    Python script Python
  • MolSSI-Education/getting-started-computational-chemistry

    Python script Python Unix/Linux
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • MolSSI-Education/oop_and_design_patterns

    Python script Python
  • Tutorial

    EMO-BON Metagenomics: From Backend Integration to Frontend Processing

    •• intermediate
    Python SPARQL fuseki
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • Course: Data Analysis with Python

    Python script Python
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • 12
  • 13
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.