Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python19
    • Python program19
    • Python script19
    • py19
    • Bayesian methods3
    • Biostatistics3
    • Descriptive statistics3
    • Gaussian processes3
    • Inferential statistics3
    • Markov processes3
    • Multivariate statistics3
    • Probabilistic graphical model3
    • Probability3
    • Statistics3
    • Statistics and probability3
    • Data rendering2
    • Data visualisation2
    • Active learning1
    • Biomathematics1
    • Cloud computing1
    • Computational biology1
    • Computer science1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Ensembl learning1
    • Graph analytics1
    • HPC1
    • High performance computing1
    • High-performance computing1
    • Kernel methods1
    • Knowledge representation1
    • Machine learning1
    • Mathematical biology1
    • Mathematics1
    • Maths1
    • Monte Carlo methods1
    • Multivariate analysis1
    • Neural networks1
    • R1
    • R program1
    • R script1
    • Recommender system1
    • Reinforcement learning1
    • Simulation experiment1
    • Supervised learning1
    • Theoretical biology1
    • Unsupervised learning1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS27
    • Show N_FILTERS more
    • Keyword
    • Python27
    • Data science4
    • Artificial intelligence3
    • R3
    • Shiny3
    • Statistics3
    • Data visualization2
    • Computational modelling1
    • DES1
    • Data Science1
    • General1
    • Large language models1
    • Machine learning1
    • Protein structure1
    • SPARQL1
    • Unix/Linux1
    • Version control1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • fuseki1
    • object-oriented programming1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified25
    • Advanced1
    • Intermediate1
    • Show N_FILTERS more
    • Licence
    • MIT License
    • License Not Specified72
    • Creative Commons Attribution 4.0 International12
    • Creative Commons Attribution Share Alike 4.0 International6
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only1
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Bioinformaticians1
    • Computational biologists1
    • Data Managers1
    • bioinformaticians1
    • computational scientists1
    • programmers1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • Sundeep Agarwal3
    • posit-dev3
    • Scott Reed2
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Arthur Goldberg1
    • AstraZeneca1
    • BioINForm1
    • Dan Chitwood1
    • Daniel Chen1
    • David Palecek1
    • Decathlon Digital - @dktunited1
    • Firas Zemzem1
    • Google1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Jake Vanderplas1
    • Jonathan Karr1
    • Michigan State University1
    • Oleksii Trekhleb1
    • S.Lott1
    • SIB Swiss Institute of Bioinformatics1
    • Sergio Martínez Cuesta1
    • Sébastien Wieckowski1
    • The Algorithms1
    • Uber1
    • cambiotraining1
    • second scight1
    • Show N_FILTERS more
    • Contributor
    • Sundeep Agarwal3
    • posit-dev3
    • Scott Reed2
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • AstraZeneca1
    • BioINForm1
    • Cymon Cox1
    • Dan Chitwood1
    • Daniel Chen1
    • Decathlon Digital - @dktunited1
    • Firas Zemzem1
    • Google1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Jake Vanderplas1
    • Michigan State University1
    • Oleksii Trekhleb1
    • S.Lott1
    • SIB Swiss Institute of Bioinformatics1
    • Sergio Martínez Cuesta1
    • Sébastien Wieckowski1
    • The Algorithms1
    • Uber1
    • cambiotraining1
    • second scight1
    • Show N_FILTERS more
    • Resource type
    • Tutorial2
    • API reference1
    • Jupyter notebook1
    • examples1
    • Show N_FILTERS more
    • Status
    • Active1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Licence: MIT License

and Max age: 1 week

and Include broken links: true

27 materials found
  • sib-swiss/llm-biodata-training

    Python script Artificial intelligence Large language models Python
  • Tutorial

    EMO-BON Metagenomics: From Backend Integration to Frontend Processing

    •• intermediate
    Python SPARQL fuseki
  • scottmreed/molecular_informatics

    Data visualisation Data science Data visualization Python
  • scottmreed/Code_withGPT_tutorial

    Python script Artificial intelligence Python
  • Graylab/DL4Proteins-notebooks

    Machine learning Artificial intelligence Protein structure Python
  • DanChitwood/plants_and_python

    Python script Python
  • Zemzemfiras1/PythonIN-86400sec

    Python script Python
  • harvardinformatics/learning-bioinformatics-at-home

    R script Statistics and probability Python R Statistics Unix/Linux
  • semacu/data-science-python

    Python script Data science Python
  • posit-dev/intro-to-shiny-for-python

    Python script Python Shiny
  • 1
  • 2
  • 3
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.