Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Cloud computing
    • Python19
    • Python program19
    • Python script19
    • py19
    • Bayesian methods3
    • Biostatistics3
    • Descriptive statistics3
    • Gaussian processes3
    • Inferential statistics3
    • Markov processes3
    • Multivariate statistics3
    • Probabilistic graphical model3
    • Probability3
    • Statistics3
    • Statistics and probability3
    • Data rendering2
    • Data visualisation2
    • Active learning1
    • Biomathematics1
    • Computational biology1
    • Computer science1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Ensembl learning1
    • Graph analytics1
    • HPC1
    • High performance computing1
    • High-performance computing1
    • Kernel methods1
    • Knowledge representation1
    • Machine learning1
    • Mathematical biology1
    • Mathematics1
    • Maths1
    • Monte Carlo methods1
    • Multivariate analysis1
    • Neural networks1
    • R1
    • R program1
    • R script1
    • Recommender system1
    • Reinforcement learning1
    • Simulation experiment1
    • Supervised learning1
    • Theoretical biology1
    • Unsupervised learning1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS1
    • Show N_FILTERS more
    • Keyword
    • Computational modelling1
    • DES1
    • Data Science1
    • Python1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • object-oriented programming1
    • Show N_FILTERS more
    • Difficulty level
    • Advanced1
    • Show N_FILTERS more
    • Licence
    • MIT License
    • Creative Commons Attribution Share Alike 4.0 International8
    • Creative Commons Attribution Non Commercial Share Alike 4.0 International4
    • BSD 3-Clause "New" or "Revised" License1
    • License Not Specified1
    • Show N_FILTERS more
    • Target audience
    • Computational biologists1
    • bioinformaticians1
    • computational scientists1
    • programmers1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • Arthur Goldberg1
    • Jonathan Karr1
    • Show N_FILTERS more
    • Resource type
    • API reference1
    • Jupyter notebook1
    • Tutorial1
    • examples1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Cloud computing

and Licence: MIT License

and Include broken links: true

1 material found
  • API reference, Jupyter notebook, Tutorial, examples

    DE-Sim examples, tutorials, and documentation

    ••• advanced
    Simulation experiment Computer science Mathematics Computational biology Computational modelling DES Data Science Python data visualization data-driven modeling …
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.