Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Reinforcement learning
    • Python68
    • Python program68
    • Python script68
    • py68
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Supervised learning17
    • Unsupervised learning17
    • Bayesian methods9
    • Biostatistics9
    • Data rendering9
    • Data visualisation9
    • Descriptive statistics9
    • Gaussian processes9
    • Inferential statistics9
    • Markov processes9
    • Multivariate statistics9
    • Probabilistic graphical model9
    • Probability9
    • Statistics9
    • Statistics and probability9
    • MicroRNA sequencing7
    • RNA sequencing7
    • RNA-Seq7
    • RNA-Seq analysis7
    • Small RNA sequencing7
    • Small RNA-Seq7
    • Small-Seq7
    • Transcriptome profiling7
    • WTSS7
    • Whole transcriptome shotgun sequencing7
    • miRNA-seq7
    • Comparative transcriptomics6
    • R6
    • R program6
    • R script6
    • Transcriptome6
    • Transcriptomics6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Bioinformatics2
    • Chromosome walking2
    • Clone verification2
    • Cloud computing2
    • Computer science2
    • DNA-Seq2
    • DNase-Seq2
    • Exomes2
    • Genome annotation2
    • Genomes2
    • Genomics2
    • HPC2
    • High performance computing2
    • High throughput sequencing2
    • High-performance computing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Personal genomics2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Synthetic genomics2
    • Targeted next-generation sequencing panels2
    • Viral genomics2
    • Whole genomes2
    • Algorithms1
    • Antimicrobial stewardship1
    • Biomathematics1
    • Bottom-up proteomics1
    • Computational biology1
    • Computer programming1
    • Data structures1
    • Discovery proteomics1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Genes1
    • Genetics1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • Graph analytics1
    • Heredity1
    • Image analysis1
    • MS-based targeted proteomics1
    • MS-based untargeted proteomics1
    • Mathematical biology1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS17
    • Show N_FILTERS more
    • Keyword
    • Machine learning17
    • Python17
    • Artificial intelligence5
    • R5
    • Data science4
    • Statistics2
    • Data visualization1
    • Genomics1
    • Large language models1
    • Microbiology1
    • Next generation sequencing1
    • Ontology1
    • Pathways and Networks1
    • Protein structure1
    • Reproducibility1
    • Snakemake1
    • Workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified17
    • Show N_FILTERS more
    • Licence
    • License Not Specified7
    • Creative Commons Attribution 4.0 International4
    • Creative Commons Attribution Share Alike 4.0 International3
    • Apache License 2.02
    • MIT License1
    • Show N_FILTERS more
    • Author
    • SIB Swiss Institute of Bioinformatics2
    • posit::conf(2024)2
    • @posit-dev1
    • BiotrAIn1
    • Emil Hvitfeldt1
    • Gray Lab1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Jose A Dianes1
    • Liquid AI1
    • Maxime Labonne1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • R. Burke Squires1
    • Shawn Rhoads1
    • University of Milan-Bicocca1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • posit-conf-20231
    • udlbook1
    • Show N_FILTERS more
    • Contributor
    • SIB Swiss Institute of Bioinformatics2
    • posit::conf(2024)2
    • @posit-dev1
    • BiotrAIn1
    • Emil Hvitfeldt1
    • Gray Lab1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Jose A Dianes1
    • Liquid AI1
    • Maxime Labonne1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • R. Burke Squires1
    • Shawn Rhoads1
    • University of Milan-Bicocca1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • posit-conf-20231
    • udlbook1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Reinforcement learning

and Max age: 24 hours

and Include broken links: true

17 materials found
  • sib-swiss/intermediate-machine-learning-training

    Machine learning Data science Python
  • NeuromatchAcademy/course-content

    Machine learning Statistics and probability Pathway or network Artificial intelligence Pathways and Networks Python Statistics
  • EmilHvitfeldt/feature-engineering-az

    Machine learning Statistics and probability Data science Python R Statistics
  • Graylab/DL4Proteins-notebooks

    Machine learning Artificial intelligence Protein structure Python
  • biotrain-latam/BiotrAIn-pilot-course

    Genomics Microbiology Sequencing Machine learning Artificial intelligence Next generation sequencing Ontology Python R
  • INRIA/scikit-learn-mooc

    Machine learning Python
  • burkesquires/python_biologist

    Workflows Data visualisation Machine learning Data visualization Python Reproducibility Snakemake
  • posit-conf-2024/ml-python

    Machine learning Python
  • posit-conf-2024/vetiver

    Machine learning Python R
  • Naviden/ML-intro-with-Python

    Machine learning Python
  • 1
  • 2
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.