Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Biomathematics1
    • Cloud computing1
    • Computational biology1
    • Computer science1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Graph analytics1
    • HPC1
    • High performance computing1
    • High-performance computing1
    • Mathematical biology1
    • Mathematics1
    • Maths1
    • Monte Carlo methods1
    • Multivariate analysis1
    • Simulation experiment1
    • Theoretical biology1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS2
    • Show N_FILTERS more
    • Keyword
    • Python2
    • Bioinformatics1
    • Computational modelling1
    • DES1
    • Data Science1
    • Programming1
    • Python biologists1
    • Record parsing1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • object-oriented programming1
    • Show N_FILTERS more
    • Difficulty level
    • Advanced1
    • Not specified1
    • Show N_FILTERS more
    • Licence
    • License Not Specified1
    • MIT License1
    • Show N_FILTERS more
    • Target audience
    • programmers
    • PaN Community63
    • PhD students48
    • PaN users37
    • PhD candidate26
    • Scientific community25
    • beamtime users, researchers, PhD students21
    • scientists21
    • ExPaNDS and PaNOSC project members15
    • researchers15
    • Bioinformaticians14
    • Data Managers14
    • Data Scientists14
    • PhD candidates14
    • Research Scientists12
    • Biomedical Researchers11
    • Researcher in life sciences10
    • Scientists10
    • beamline users10
    • research data scientist9
    • general public8
    • Biologists7
    • data curator7
    • research data engineer7
    • Biologists, Genomicists, Computer Scientists6
    • Materials scientists6
    • beginner bioinformaticians6
    • data managers6
    • engineers6
    • Photon Community5
    • bioinformaticians4
    • chemists4
    • facility staff4
    • industry4
    • life scientists4
    • Clinicians3
    • Researchers3
    • archaeologists3
    • biologists3
    • crystallography3
    • instrument scientist3
    • masters students3
    • material scientists3
    • neutron community3
    • Chemists2
    • Data stewards2
    • Ontologists2
    • PhD Students2
    • Physicists2
    • Post Docs2
    • Undergraduate students2
    • physicists2
    • policy officer2
    • project manager2
    • spectroscopy2
    • researchers in energy materials1
    • Beginner1
    • Bench biologists1
    • Bioinformatician1
    • Bioinformatician, Bioanalysts1
    • Biomedical researchers1
    • Computational biologists1
    • Developers1
    • ECR1
    • IT support1
    • Librarians1
    • Life Science Researchers1
    • Life Scientists1
    • Life scientists1
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PhD1
    • PhD Scholars, Graduates and Post Graduates, Professors, Associate Professors, Assistant Professors, Bio instruments Professionals, Bio-informatics Professionals, Directors, CEO’s of Organizations, Supply Chain companies, Manufacturing Companies, Software development companies, Research Institutes and members1
    • PhD students in Genomics datascience1
    • Principal Investigators1
    • Principal Investigators (PIs)1
    • Research scientists1
    • Students1
    • Trainers1
    • archaeologist1
    • biochemists1
    • computational scientists1
    • data manager1
    • experts / scientists in heritage sciences1
    • graduate students1
    • librarians1
    • medical researchers1
    • operational manager1
    • paleontologists1
    • post-docs1
    • postdocs1
    • research scientists1
    • researchers in energy materials1
    • scientific1
    • software developers1
    • software engineers1
    • students1
    • Show N_FILTERS more
    • Author
    • Arthur Goldberg1
    • Jonathan Karr1
    • allegra.via Via1
    • Show N_FILTERS more
    • Resource type
    • API reference1
    • Jupyter notebook1
    • Tutorial1
    • examples1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Hide materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Target audience: programmers

and Include broken links: true

2 materials found
  • API reference, Jupyter notebook, Tutorial, examples

    DE-Sim examples, tutorials, and documentation

    ••• advanced
    Simulation experiment Computer science Mathematics Computational biology Computational modelling DES Data Science Python data visualization data-driven modeling …
  • Parsing data records using Python programming

    Bioinformatics Programming Python Python biologists Record parsing
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.