Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Python66
    • Python program66
    • Python script66
    • py66
    • Active learning17
    • Ensembl learning17
    • Kernel methods17
    • Knowledge representation17
    • Machine learning17
    • Neural networks17
    • Recommender system17
    • Reinforcement learning17
    • Supervised learning17
    • Unsupervised learning17
    • Bayesian methods8
    • Biostatistics8
    • Data rendering8
    • Data visualisation8
    • Descriptive statistics8
    • Gaussian processes8
    • Inferential statistics8
    • Markov processes8
    • Multivariate statistics8
    • Probabilistic graphical model8
    • Probability8
    • Statistics8
    • Statistics and probability8
    • MicroRNA sequencing7
    • RNA sequencing7
    • RNA-Seq7
    • RNA-Seq analysis7
    • Small RNA sequencing7
    • Small RNA-Seq7
    • Small-Seq7
    • Transcriptome profiling7
    • WTSS7
    • Whole transcriptome shotgun sequencing7
    • miRNA-seq7
    • Comparative transcriptomics6
    • R6
    • R program6
    • R script6
    • Transcriptome6
    • Transcriptomics6
    • Single-cell genomics5
    • Single-cell sequencing5
    • Exomes3
    • Genome annotation3
    • Genomes3
    • Genomics3
    • Personal genomics3
    • Synthetic genomics3
    • Viral genomics3
    • Whole genomes3
    • Bioinformatics2
    • Chromosome walking2
    • Clone verification2
    • Cloud computing2
    • Computer science2
    • DNA-Seq2
    • DNase-Seq2
    • HPC2
    • High performance computing2
    • High throughput sequencing2
    • High-performance computing2
    • High-throughput sequencing2
    • NGS2
    • NGS data analysis2
    • Next gen sequencing2
    • Next generation sequencing2
    • Panels2
    • Primer walking2
    • Sanger sequencing2
    • Sequencing2
    • Targeted next-generation sequencing panels2
    • Algorithms1
    • Antimicrobial stewardship1
    • Biomathematics1
    • Bottom-up proteomics1
    • Breakend assembly1
    • Computational biology1
    • Computer programming1
    • Data structures1
    • Discovery proteomics1
    • Dynamic systems1
    • Dynamical systems1
    • Dynymical systems theory1
    • Functional genome annotation1
    • Genes1
    • Genetics1
    • Genome assembly1
    • Genomic assembly1
    • Genotype1
    • Genotype and phenotype1
    • Genotype and phenotype resources1
    • Genotype-phenotype1
    • Genotype-phenotype analysis1
    • Genotyping1
    • Graph analytics1
    • Heredity1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS124
    • Show N_FILTERS more
    • Keyword
    • Python
    • Data science22
    • Machine learning17
    • R17
    • Python biologists8
    • Statistics8
    • Data visualization7
    • Programming7
    • RNA-seq7
    • Artificial intelligence6
    • Transcriptomics6
    • Unix/Linux6
    • General5
    • Single-cell sequencing5
    • Reproducibility4
    • Genomics3
    • Next generation sequencing3
    • Bioinformatics2
    • Biopython2
    • Cloud computing2
    • Containerization2
    • Large language models2
    • SQL2
    • Shiny2
    • Snakemake2
    • Version control2
    • API1
    • Computational modelling1
    • DES1
    • Data Science1
    • Data analysis1
    • Data visualisation1
    • Docker1
    • Foundations of Data Science1
    • Genome annotation1
    • Genome assembly1
    • Genome sequencing1
    • IMPC1
    • Image analysis1
    • International Mouse Phenotyping Consortium1
    • Java1
    • Long read sequencing1
    • Microbiology1
    • Mouse phenotypes1
    • Ontology1
    • Pathways and Networks1
    • Pattern matching1
    • Perl1
    • Programmatic access1
    • Protein structure1
    • Proteomics1
    • Quarto1
    • RSE1
    • Record parsing1
    • Research software1
    • SPARQL1
    • Sequence alignments1
    • Spatial transcriptomics1
    • Unix1
    • Workflows1
    • coding1
    • coding skills1
    • data visualization1
    • data-driven modeling1
    • discrete-event simulation1
    • fuseki1
    • jupyter-notebook1
    • object-oriented programming1
    • programming1
    • software development1
    • testing1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified118
    • Intermediate4
    • Advanced2
    • Show N_FILTERS more
    • Licence
    • License Not Specified68
    • MIT License24
    • Creative Commons Attribution 4.0 International12
    • Creative Commons Attribution Share Alike 4.0 International6
    • BSD 3-Clause "New" or "Revised" License4
    • Apache License 2.03
    • Creative Commons Zero v1.0 Universal3
    • GNU General Public License v3.0 only3
    • The Unlicense1
    • Show N_FILTERS more
    • Target audience
    • Biologists7
    • Biologists, Genomicists, Computer Scientists6
    • beginner bioinformaticians6
    • bioinformaticians4
    • Clinicians2
    • PhD students2
    • programmers2
    • Bench biologists1
    • Bioinformaticians1
    • Computational biologists1
    • Data Managers1
    • Life scientists, bioinformaticians and researchers who are familiar with writing Python code and core Python elements, and would like to use it in their daily data exploration and visualization tasks.1
    • PhD1
    • Students1
    • computational scientists1
    • post-docs1
    • software engineers1
    • Show N_FILTERS more
    • Author
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • allegra.via Via7
    • MolSSI Education4
    • Sundeep Agarwal3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit-dev2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • Arthur Goldberg1
    • AstraZeneca1
    • Avans Hogeschool1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • David Palecek1
    • Decathlon Digital - @dktunited1
    • Dipl.-Inform. Bernd Klein1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fran Lewitter1
    • Fred Hutch Data Science Lab1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jeremy Cohen1
    • Jonathan Karr1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Paul Yorke1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Scott Reed1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • Steve Crouch1
    • The Algorithms1
    • The Carpentries1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • Show N_FILTERS more
    • Contributor
    • The Carpentries Incubator8
    • SIB Swiss Institute of Bioinformatics7
    • MolSSI Education4
    • Sundeep Agarwal3
    • Allen Downey2
    • Data Carpentry2
    • Google2
    • Instituto Gulbenkian de Ciência2
    • Jake Vanderplas2
    • PyMC Labs2
    • The Gulbenkian Training Programme in Bioinformatics2
    • Theis Lab2
    • UC Davis Bioinformatics Core Training Page2
    • cambiotraining2
    • posit-dev2
    • posit::conf(2024)2
    • @SUNET1
    • @UTAustin1
    • @foss421
    • @posit-dev1
    • @posit-pbc1
    • @pydantic1
    • @rstudio @UBC-DSCI @UBC-MDS1
    • Alex Hall1
    • Ankit Mahato1
    • Anthony Bretaudeau1
    • AstraZeneca1
    • BioINForm1
    • BiotrAIn1
    • Charles Severance1
    • Common Fund Data Ecosystem1
    • Cymon Cox1
    • Dan Chitwood1
    • Daniel Chen1
    • Data Science in Practice1
    • Decathlon Digital - @dktunited1
    • Dominic Waithe1
    • ELIXIR Europe Training1
    • Emil Hvitfeldt1
    • Firas Zemzem1
    • Fred Hutch Data Science Lab1
    • Gray Lab1
    • Greg Malcolm1
    • Guillaume Gautier1
    • Hacking for Science1
    • Hamel Husain1
    • Health Data Science Sandbox1
    • Helena Rasche1
    • Icahn School of Medicine at Mount Sinai1
    • Inria1
    • Insee1
    • Jeffrey Hu1
    • Jose A Dianes1
    • João Ventura1
    • Kevin Heavey1
    • Kushal Das1
    • Kyran Dale1
    • Leighton Pritchard1
    • LiaPlayground1
    • Lino Galiana1
    • Liquid AI1
    • Marius van den Beek1
    • Max Planck Institute for Astronomy1
    • Maxime Labonne1
    • Michael Pyrcz1
    • Michigan State University1
    • NBIS - National Bioinformatics Infrastructure Sweden1
    • NIAID BCBB1
    • Navid Nobani1
    • Neuromatch Academy1
    • Oleksii Trekhleb1
    • Oxford University1
    • Parlance Labs1
    • Peter van Heusden1
    • Plants&Python1
    • Python Packages1
    • Queen Mary University of London, School of Business and Management1
    • R. Burke Squires1
    • Rami Krispin1
    • Real Python1
    • S.Lott1
    • Saskia Hiltemann1
    • Scott Reed1
    • Sebastian Raschka1
    • Sergio Martínez Cuesta1
    • Shawn Rhoads1
    • SoftUni1
    • Software Carpentry1
    • The Algorithms1
    • UC Berkeley Data 1001
    • UC Berkeley Data 81
    • UW Interactive Data Lab1
    • Uber1
    • University of Michigan1
    • University of Milan-Bicocca1
    • University of Strathclyde1
    • Valentin Danchev1
    • Vince Carey1
    • Wes McKinney1
    • Women In Bioinformatics and Data Science Latin America1
    • Show N_FILTERS more
    • Resource type
    • e-learning4
    • Tutorial3
    • API reference1
    • Jupyter notebook1
    • examples1
    • Show N_FILTERS more
    • Related resource
    • Jupyter Notebook (with Solutions)1
    • Jupyter Notebook (without Solutions)1
    • Show N_FILTERS more
    • Status
    • Active4
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Keywords: Python

and Max age: 1 week

124 materials found
  • mpi-astronomy/data_science_training_materials

    Python script Data science Python
  • rnorm/book_sample

    Python script R script Data science Python R
  • Tutorial

    Advanced Python course on python-course.eu

    ••• advanced
    Python coding programming software development
  • NeuromatchAcademy/course-content

    Machine learning Statistics and probability Pathway or network Artificial intelligence Pathways and Networks Python Statistics
  • Kyrand/dataviz-with-python-and-js-ed-2

    Data visualisation Data science Data visualization Java Python
  • sib-swiss/single-cell-python-training

    Sequencing RNA-Seq Single-cell sequencing Transcriptomics Next generation sequencing Python RNA-seq
  • GeostatsGuy/DataScienceInteractivePython

    Statistics and probability Data science Python Statistics
  • e-learning

    Accessing Mouse Phenotypes and Disease Associations with the IMPC Solr API: A complete Python guide

    Genotype and phenotype IMPC International Mouse Phenotyping Consortium Mouse phenotypes Python
  • EmilHvitfeldt/feature-engineering-az

    Machine learning Statistics and probability Data science Python R Statistics
  • scottmreed/molecular_informatics

    Data visualisation Data science Data visualization Python
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • …
  • 12
  • 13
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.