Training eSupport System
  • Log In
    • Log in with UmbrellaID
    • Log in with Helmholtz AAI
    • Login
  • About
  • Events
  • Materials
  • Workflows
  • Collections
  • Learning paths
  • Spaces
  • Directory
    • Providers

PaN-Training makes use of some necessary cookies to provide its core functionality.

See our Privacy Policy for more information.

You can modify your cookie preferences at any time here, or from the link in the footer.

Allow necessary cookies
  1. Home
  2. Materials

Filter

  • Sort

  • Filter Clear filters

    • Scientific topic
    • Ensembl learning
    • Python35
    • Python program35
    • Python script35
    • py35
    • FAIR data23
    • Findable, accessible, interoperable, reusable data23
    • Data management14
    • Metadata management14
    • Research data management (RDM)14
    • Active learning7
    • Kernel methods7
    • Knowledge representation7
    • Machine learning7
    • Neural networks7
    • Recommender system7
    • Reinforcement learning7
    • Supervised learning7
    • Unsupervised learning7
    • MicroRNA sequencing6
    • RNA sequencing6
    • RNA-Seq6
    • RNA-Seq analysis6
    • Small RNA sequencing6
    • Small RNA-Seq6
    • Small-Seq6
    • Transcriptome profiling6
    • WTSS6
    • Whole transcriptome shotgun sequencing6
    • miRNA-seq6
    • Comparative transcriptomics5
    • Data rendering5
    • Data visualisation5
    • Transcriptome5
    • Transcriptomics5
    • Exomes4
    • Genome annotation4
    • Genomes4
    • Genomics4
    • Personal genomics4
    • R4
    • R program4
    • R script4
    • Synthetic genomics4
    • Viral genomics4
    • Whole genomes4
    • Chromosome walking3
    • Clone verification3
    • DNA-Seq3
    • DNase-Seq3
    • High throughput sequencing3
    • High-throughput sequencing3
    • NGS3
    • NGS data analysis3
    • Next gen sequencing3
    • Next generation sequencing3
    • Panels3
    • Primer walking3
    • Sanger sequencing3
    • Sequencing3
    • Single-cell genomics3
    • Single-cell sequencing3
    • Targeted next-generation sequencing panels3
    • Bayesian methods2
    • Bioinformatics2
    • Biostatistics2
    • Bottom-up proteomics2
    • Descriptive statistics2
    • Discovery proteomics2
    • Gaussian processes2
    • Inferential statistics2
    • MS-based targeted proteomics2
    • MS-based untargeted proteomics2
    • Markov processes2
    • Metaproteomics2
    • Multivariate statistics2
    • Peptide identification2
    • Probabilistic graphical model2
    • Probability2
    • Protein and peptide identification2
    • Proteomics2
    • Quantitative proteomics2
    • Statistics2
    • Statistics and probability2
    • Targeted proteomics2
    • Top-down proteomics2
    • Aerobiology1
    • Antimicrobial stewardship1
    • Behavioural biology1
    • Biodiversity1
    • Biological rhythms1
    • Biological science1
    • Biology1
    • Chronobiology1
    • Cryobiology1
    • Diffraction experiment1
    • Enrichment1
    • Enrichment analysis1
    • Functional enrichment1
    • Genes1
    • Show N_FILTERS more
    • Content provider
    • Elixir TeSS7
    • Show N_FILTERS more
    • Keyword
    • Machine learning7
    • Python7
    • R4
    • Artificial intelligence2
    • Data science2
    • Data visualization1
    • Genomics1
    • Microbiology1
    • Next generation sequencing1
    • Ontology1
    • Reproducibility1
    • Snakemake1
    • Statistics1
    • Workflows1
    • Show N_FILTERS more
    • Difficulty level
    • Not specified7
    • Show N_FILTERS more
    • Licence
    • License Not Specified
    • Creative Commons Attribution 4.0 International4
    • Creative Commons Attribution Share Alike 4.0 International3
    • Apache License 2.02
    • MIT License1
    • Show N_FILTERS more
    • Author
    • @posit-dev1
    • BiotrAIn1
    • Emil Hvitfeldt1
    • Jose A Dianes1
    • NIAID BCBB1
    • Navid Nobani1
    • R. Burke Squires1
    • University of Milan-Bicocca1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • udlbook1
    • Show N_FILTERS more
    • Contributor
    • @posit-dev1
    • BiotrAIn1
    • Emil Hvitfeldt1
    • Jose A Dianes1
    • NIAID BCBB1
    • Navid Nobani1
    • R. Burke Squires1
    • University of Milan-Bicocca1
    • bioinformatics.ca1
    • http://mosaic-tx.com1
    • udlbook1
    • Show N_FILTERS more
  • Show materials from all spaces
  • Show disabled materials
  • Show materials with broken links
  • Show archived materials
    • Date added
    • In the last 24 hours
    • In the last 1 week
    • In the last 1 month

Training materials

  • Subscribe via email

Email Subscription

Register training material

Scientific topics: Ensembl learning

and Max age: 1 month

and Licence: License Not Specified

7 materials found
  • EmilHvitfeldt/feature-engineering-az

    Machine learning Statistics and probability Data science Python R Statistics
  • biotrain-latam/BiotrAIn-pilot-course

    Genomics Microbiology Sequencing Machine learning Artificial intelligence Next generation sequencing Ontology Python R
  • burkesquires/python_biologist

    Workflows Data visualisation Machine learning Data visualization Python Reproducibility Snakemake
  • Naviden/ML-intro-with-Python

    Machine learning Python
  • bioinformaticsdotca/MLE_2023

    Machine learning Python R
  • jadianes/data-science-your-way

    Machine learning Data science Python R
  • udlbook/udlbook

    Machine learning Artificial intelligence Python
Training eSupport System
pan-training@hzdr.de
Imprint
Contribute
About PaN-Training
Funding & acknowledgements
Privacy
Cookie preferences
Version: 1.5.1
Source code
API documentation

The training portal for the photon & neutron community is supported through the European Union's Horizon 2020 research and innovation programme, under grant agreement 857641, 823852, the Horizon Europe Framework under grant agreement 101129751, and the consortium DAPHNE4NFDI in the context of the work of the NFDI e.V. under the DFG - project number 460248799.